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Statistical mechanics of warm and cold unfolding in proteins
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Abstract. We present a statistical mechanics treatment of the stability of globular proteins which takes
explicitly into account the coupling between the protein and water degrees of freedom. This allows us to
describe both the cold and the warm unfolding, thus qualitatively reproducing the known thermodynamics
of proteins.

PACS. 87.10.+e General, theoretical, and mathematical biophysics (including logic of biosystems,
quantum biology, and relevant aspects of thermodynamics, information theory, cybernetics, and bionics)
– 05.70.Jk Critical point phenomena – 82.20.Db Statistical theories (including transition state)

The folded conformation of globular proteins is a state of
matter peculiar in more than one respect. The density is
that of a condensed phase (solid or liquid), and the rela-
tive position of the atoms is, on average, fixed; these are
the characteristics of the solid state. However, solids are
either crystalline or amorphous, and proteins are neither:
the folded structure, while ordered in the sense that each
molecule of a given species is folded in the same way, lacks
the translational symmetry of a crystal. Unlike any other
known solids, globular proteins are not really rigid, being
able to perform large conformational motions while retain-
ing locally the same folded structure. Finally, these are
mesoscopic systems, consisting of a few thousand atoms.

Quantitatively, the peculiarities of this state of matter
are perhaps best appreciated from the thermodynamics.
Delicate calorimetric measurements [1–3] on the folding
transition of globular proteins reveals the following pic-
ture: firstly the transition is first order, at least in the
case of single domain proteins. Secondly, the stability of
the folded state, i.e. the difference in Gibbs potential ∆G
between the unfolded and the folded state is at most a frac-
tion of kTroom per aminoacid. Following Privalov [3], we
will refer to this property as “cooperativity”. The Gibbs
potential difference ∆G, as a function of temperature, is
non monotonic: it has a maximum around room temper-
ature (where ∆G > 0 and so the folded form is stable),
then crosses zero and becomes negative both for higher
and lower temperatures. Correspondingly, the protein un-
folds not only at high, but also at low temperatures. This
phenomenon of “cold unfolding”, which is observed ex-
perimentally, is most peculiar: solids usually do not melt
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upon cooling! For temperatures around the cold unfolding
transition and below, the enthalpy difference ∆H between
the unfolded and the folded state is negative; this means
that cold unfolding proceeds with a release of heat (a neg-
ative latent heat), as is also observed experimentally; at
the higher unfolding transition, on the contrary, ∆H > 0
which corresponds to the usual situation of a positive la-
tent heat. Figure 1 shows Privalovs measurements of the
specific heat of myoglobin [3]. There are two peaks in the
specific heat, corresponding to the two unfolding transi-
tions, and a large gap ∆C in the specific heat between the
unfolded and the folded state. This gap is again peculiar
to proteins: usually, for a melting transition ∆C ≈ 0 (e.g.
for ice at 0 ◦C, C = 1.01 cal/g K while for water at 0 ◦C,
C = 1.00 cal/g K). The existence of this gap∆C is related
to the phenomenon of cold unfolding [3].

From the microscopic point of view, the main driving
force for folding is the hydrophobic effect. In the native
state of globular proteins hydrophobic residues are gener-
ally found on the inside of the molecule, where they are
shielded from the water, while hydrophilic residues are
typically on the surface. In the following we refer to the
difference in free energy between hydrophobic residues in-
teracting with each other in the core of the folded protein
and these same residues interacting with the water in the
unfolded structure, including any changes in the micro-
scopic states of the water, as the “hydrophobic interac-
tion”. Hydrogen bonds within the regular elements of sec-
ondary structure (α helices and β sheets), while necessary
for the stability of the native state, can hardly be thought
of as providing the positive ∆G of the folded structure,
since the unfolded structure would form just as many hy-
drogen bonds with the water. When the protein unfolds,
the hydrophobic residues of the interior are exposed; this
accounts for most of the gap in the specific heat ∆C [3],
according to the known effect that dissolving hydrophobic
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Fig. 1. Calorimetric measurements of the specific heat of Myo-
globin at four different values of pH, as presented by Privalov in
reference [3]. At sufficiently low pH the native structure of the
protein never becomes stable, thus the protein remains in its
unfolded structure with approximately constant heat capacity
over the measured temperature range. By increasing pH the
native structure becomes stabilized for intermediate tempera-
tures, defining a transition to an unfolded state at both low
and high temperatures, denoted respectively cold and warm
denaturation. There is a gap in the specific heat between the
folded and the unfolded states.

substances in water raises the heat capacity of the solu-
tion [4].

As in other branches of physics, once the thermody-
namics of a system is known it is desirable to develop a
corresponding statistical mechanics picture. Several mod-
els have been proposed which address some aspects of the
folding transition. In the “zipper model” [5] , which was in-
troduced to describe the helix–coil transition, the relevant
degrees of freedom (conformational angles) are treated as
a set of variables which can take two values: one corre-
sponding to matching the ordered structure (helix), and
the other corresponding to the “coil” state. The prob-
lem is then equivalent to the 1D Ising model. A related
parametrization for the 3-d folding transition has been
proposed by Zwanzig [6], describing the folding transition
in terms of variables each of which awards match with
the correct ground state. A zipper model that deals with
the initial pathway of protein folding has been proposed
by Dill, Fiebig and Chan [7]. For a review see [8]. A re-
cent discussion of hydrophobicity in protein folding is in
reference [9].

However, to our knowledge no model exists which re-
produces all the thermodynamic features surveyed above.
With the present work, we address this question.

We start with a Hamiltonian which we have recently
introduced [10] to describe self-assembly of a cooperatively
stabilized (in the sense defined above) structure:

H = − E0 (ϕ1 + ϕ1ϕ2 + ϕ1ϕ2ϕ3 + · · ·+ ϕ1ϕ2 · · ·ϕN ),
(1)

here the ϕ’s are variables which take on the values 0 and
1, and, in the spirit of the zipper model, we define the
ground state (ϕi = 1 ∀ i ) as the template corresponding to
the ordered, aperiodic structure, i.e. the folded state. One

can think of the ϕ’s as appropriately coarse-grained angle
variables which define the conformation of the polypeptide
chain. The above Hamiltonian is then a description of a
system that has a specific folding pathway; a property that
is well documented for proteins [11–15]. In particular, in
terms of folding the first variable, ϕ1, may be vieved as a
nucleation center, whereas subsequent variables represent
subsequent addition to structures onto it, much like what
is suggested in the experimental analysis of folding of the
protein Barnase from microseconds to seconds in reference
[16]. The total number of steps in the subsequent folding
process is presumably less than the number of amino acids,
but a priori unknown. It is important to realize that if one
parametrizes the folding with fewer steps N , each unit
will be larger and energies and entropies appropriately
increased (inversely proportional to N). Thus if one uses
fewer steps N to parametrize the folding, the transition
temperature for the system remains unchanged, only the
sharpness of the transition will decrease.

As discussed in [10], this system has a first order phase
transition from an ordered to a disordered state at tem-
perature Tm = 1/ ln 2. The Hamiltonian (1) exhibits a
hierarchical structure: if one of the variables ϕ1, ϕ2, ..., ϕi
equals zero, it does not matter what value the remain-
ing variables ϕi+1, ϕi+2, ..., ϕN assume. As a consequence,
the system displays cooperativity, in the sense that the
binding energy per degree of freedom in the ordered state,
for T ≈ Tm, is only of order kTm.

In order to proceed further, it is necessary to take
also the water into account. The relevant physics here is
that dissolving a hydrophobic substance in water causes
a large decrease in the entropy of the system [3]. This en-
tropy change is attributed to a partial ordering of the wa-
ter molecules around the hydrophobic solute. The gradual
melting of this additional structure upon heating causes
the increase in heat capacity. Consequently, we introduce
a second set of variables µ1, µ2, ..., µN which describe the
water. These water degrees of freedom couple to the un-
folded protein degrees of freedom because these expose
hydrophobic amino acids to the water. This is achieved
by the Hamiltonian:

H = − E0 (ϕ1 + ϕ1ϕ2 + ϕ1ϕ2ϕ3 + · · ·+ ϕ1ϕ2 · · ·ϕN )

+ (1− ϕ1)µ1 + (1− ϕ1ϕ2)µ2 + · · ·

+ (1− ϕ1ϕ2 · · ·ϕN )µN .
(2)

The ϕ’s take on the values 0 or 1, as before. Each of
the µi’s can take a value from the set {Emin + s∆E ,
s = 0, 1, 2, ..., g− 1} where Emin < 0 , ∆E > 0. If at least
one of the variables ϕ1, ..., ϕi equals zero, the correspond-
ing contribution of the i’th water variable to the energy
is µi and zero otherwise. Therefore when ϕ1 · · ·ϕi = 1,
the states for the corresponding water degree of freedom
µi are degenerate with zero contribution to the energy
and degeneracy g. The equidistant energy levels reflect
the experimentally observed approximate constant heat
capacity at intermediate temperatures, whereas the finite
number of levels g takes into account that protein-water
interactions vanish above 120 ◦C.
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To reiterate, the physical meaning of this Hamiltonian
is that the water molecules in contact with an unfolded
portion of the protein go to a lower entropy state (com-
pared to the water molecules in contact with a folded por-
tion), but also, for low temperatures, to a more tightly
bound state. The more specific features of the model (2),
e.g. the structure of the energy spectrum, the particu-
lar coupling of the µ’s to the ϕ’s, etc. can be varied
while maintaining the overall thermodynamic behavior de-
scribed below. Here we just present the case which is sim-
plest to solve analytically.

The calculation of the partition function is straightfor-
ward. We parametrize the states of the system by the num-
ber n of consecutive matches ϕ1 = 1, ϕ2 = 1, ..., ϕn = 1
and ending with ϕn+1 = 0 and the values {sn+1, ..., sN}
where each si ∈ {0, 1, 2, ..., g− 1} for the (N − n) µ vari-
ables coupled to the unfolded portion of the protein. The
energy of this state is

ε(n, sn+1, ..., sN ) = − n E0 +
N∑

i=n+1

(Emin +∆E si)

(3)

where we have introduced the energy scale E0 for the pro-
tein variable in order to make the formulas dimensionally
more transparent (up to now we used E0 = 1). Denot-
ing β = 1/T as the reciprocal temperature, the partition
function is

Z =
N−1∑
n=0

2N−n−1gn

×
g−1∑

sn+1=0

g−1∑
sn+2=0

· · ·
g−1∑
sN=0

exp( −βε(n, s1, · · · , sN ))

+ gN exp( βE0N).
(4)

In the above equation the factor 2N−n−1 is the degeneracy
of the unfolded protein degrees of freedom and the factor
gn is the degeneracy of water which is not exposed to the
inside of the protein. Factorizing the sums over si into
partition functions Zw for each water degree of freedom
we write:

Z =
1

2
(2Zw)N

N−1∑
n=0

(
g exp(βE0)

2Zw

)n
+ (g exp( βE0))N

(5)

where the phase space for a water degree of freedom ex-
posed to an unfolded protein degree of freedom is

Zw =

g−1∑
s=0

exp(−β(Emin + s∆E))

=
(exp(−βEmin)− exp(−βEmax)

(1− exp(−β∆E))
(6)

where Emax = Emin + g∆E . From equation (5) one sees
directly that the state of the system is determined by the
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Fig. 2. Specific heat as function of temperature T for the
model, with four different values of the chemical potential µ =
−(E0 + Emin) = −1.0, − 1.1, − 1.2, − 1.5 and with fixed
level spacing ∆E = 0.2, g = 35 and system size N = 60.
As the chemical potential is lowered, it becomes increasingly
difficult to fold, and finally for sufficiently low µ the protein
stays unfolded.

size of the quantity

g exp(βE0)

2Zw
= exp(β∆f). (7)

If ∆f > 0 then the system will be in the folded state
because the sum in equation (5) is dominated by the last
term, whereas for ∆f < 0 the system will be unfolded.

The sum in equation (5) can be readily performed and
the total partition function is

Z =
1

2
(2Zw)N

1− (g exp(E0β) / (2Zw))
N

1− (g exp(E0β) / (2Zw))

+ (g exp( βE0))
N
. (8)

The free energy is F = −T ln(Z), the energy E = −d ln(Z)
dβ

and the heat capacity C = dE/dT . Because there is no
pressure in the model, the energy E takes the place of the
enthalpy H = E + pV and the free energy F = E − TS
takes the place of the Gibbs potential G = H−TS. In Fig-
ure 2 we show the heat capacity per degree of freedom for
four different choices of Emin, representing four different
values of the chemical potential, which we discuss later.
The characteristic feature is that there are two peaks cor-
responding to warm and cold unfolding, and a gap ∆C
in the heat capacity between the unfolded and the folded
form. At higher temperatures, i.e. T > g∆E , the gap goes
to zero because the water becomes effectively degenerate
again. In Figure 3a we show the order parameter 〈n〉 as
function of temperature. The figure indeed confirms that
the protein is folded between the two transitions.

We now calculate explicitly the difference in the ther-
modynamic functions between the unfolded and the folded
state. We consider these quantities per degree of freedom,
denoted by small letters, i.e. f = F/N etc. The thermody-
namic functions associated to a folded (f) protein variable
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is the energy ef = −E0, the entropy sf = ln(g) and the
free energy ff = −E0 − T ln(g). The free energy associ-
ated to an unfolded (u) protein variable is given by the
corresponding partition function of water multiplied by
the degeneracy factor of an unfolded part of the protein:
fu = −T ln(Zw 2). The difference in free energy between
folded and unfolded state is accordingly

∆f = fu − ff = T ln

(
g exp(βE0)

2 Zw

)
(9)

which is the quantity we earlier identified as the one
which decides whether the system cooperatively selects
the folded or the unfolded state. To clarify the contents of
this formula, we rewrite it for small energy level spacings
∆E � T :

∆f = E0 + Emin + T ln(
g∆E

2 T
)

− T ln (1− exp(−(Emax − Emin)/T )) . (10)

From this expression for the difference in free energy one
easily obtains the corresponding differences in energy, en-
tropy and specific heat. In particular, we obtain a gap in
the specific heat between the folded and unfolded state
∆c = (∆E/T )2/(e∆E/T − 1)2 e∆E/T ∼ exp(∆E/T ) ∼ 1
for temperatures T ∈ [∆E , Emin + Emax], see Figure 2.

To simplify the discussion let us consider the limit of
large Emax in (10). It is easily seen that ∆f has a maxi-
mum at the temperature Tm ≈ g∆E/2e. The correspond-
ing value of ∆f is ∆f(Tm) ≈ (Emin + E0) + g∆E/2e ,
so the condition for the existence of a region of stability
of the ordered structure (∆f > 0) is:

g∆E

2e
> −(Emin + E0). (11)

This is of course always satisfied if (Emin + E0) > 0. How-
ever, the more interesting situation is (Emin + E0) < 0,
since then ∆f < 0 at sufficiently low temperature, i.e.
the phenomenon of cold unfolding appears. Under these
conditions ∆E is also negative at sufficiently low temper-
ature which means that we have a negative latent heat
for cold unfolding. Figure 3b shows these thermodynamic
functions. They qualitatively reproduce the known ther-
modynamic behavior of globular proteins as described in
the introduction [3].

In our description the mechanism for the transitions
is the following. The excistence of an unfolded state at
low temperature is associated to the energy gain of water
ordering around the hydrophobic residues. At zero T this
contribution is Emin per degree of freedom, and in order for
cold unfolding to take place, this contribution has to dom-
inate the chain energy E0. With increasing temperature
this is in competition with the folding entropy gain of wa-
ter due to a shielding of folded hydrophobic residues from
the water. This difference in the water degrees of freedom
between the folded and unfolded states deminishes with
increasing temperature because an increasing fraction of
water energy levels are accesible thereby finally opening
for the warm unfolding.
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Fig. 3. (a) Average fraction of folded protein variables as func-
tion of temperature for µ = −(E0+Emin) = −1.0 and the other
parameters as in Figure 1. The figure shows that in between
the transitions the protein is folded. (b) Difference of thermo-
dynamic functions between folded and unfolded configurations
for the same chemical potential as in (a). The difference in
free energy ∆f has a maximum and becomes negative for both
high and low temperature (cold unfolding). ∆S/N and ∆E/N
increase with temperature. ∆E/N is negative at the cold un-
folding transition corresponding to a negative latent heat.

At the high temperature transition the unfolding is
due to the entropy gain of the variables ϕ, which here is
log(2) per degree of freedom. This competes with a high
temperature refolding favored partly by the energy gain
of the chain, which is E0 per degree of freedom, and partly
by the already mentioned entropy gain of the water when
the hydrophobic residues are shielded. Therefore the tran-
sition temperature will be higher if the entropy contribu-
tion of the water is increased (making g larger at fixed
∆E). This can be read off from equation (7), where the
influence of water is expressed by the ratio g/Zw.

For both warm and cold unfolding the phase transition
is parametrized through the same factor g exp(βE0)/(2Zw)
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and the mathematical interplay between the degrees of
freedom is similar in the two cases, as stated in the sum-
mation of equation (5).

Coming back to the partition function (3, 4), we may
write:

E = −NE0 + (N − n)(E0 + Emin) +
N∑

i=n+1

∆E si

= −NE0 +
N∑

i=n+1

[∆E si + E0 + Emin] (12)

and

Z = eβNE0
N−1∑
n=0

2N−n−1gn
∑
{si}

e−β
∑N
i=n+1 (Ei−µ)

+ gN exp( βE0N) (13)

where we have set Ei = ∆E si , µ = −(E0 + Emin). From
this expression for Z we can identify µ with the chem-
ical potential of the water , or, to be more precise, the
difference in chemical potential of the water when it is in
contact with the hydrophobic interior of the protein and
when it is not. Therefore, µ > 0 is the physically relevant
situation. Experimentally, µ can be changed by adding
denaturants, changing pH, etc., which indeed alters the
stability of the ordered structure. The four curves in Fig-
ure 2, which are to be compared with the experimental
data in Figure 1, are the results of the model for different
values of the chemical potential µ.

In conclusion, this paper introduces a new model
for the stability of proteins which reproduces their
known thermodynamics. We obtain: 1) first order un-
folding transitions; 2) both warm and cold unfolding;
3) cooperativity in the sense that the free energy dif-
ference stabilizing the folded state is only a fraction
of kTroom per degree of freedom; 4) a qualitatively
correct behavior of the specific heat both as a func-
tion of temperature and chemical potential; 5) a gap
in the specific heat between the unfolded and folded
state; 6) a negative latent heat for the cold unfolding.

A deficiency of the model is that our description of the
water-protein coupling is simplified. As a result, the two
transitions are too far apart in absolute temperature and
in the model the cold unfolding appears sharper than the
warm unfolding, which is not seen in experiment. This
deficiency calls for some modifications, in particular by
introducing both hydrophobic and hydrophilic ϕi’s one
can influence the relative strength of the two transitions.
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